If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16b+b^2=132
We move all terms to the left:
16b+b^2-(132)=0
a = 1; b = 16; c = -132;
Δ = b2-4ac
Δ = 162-4·1·(-132)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-28}{2*1}=\frac{-44}{2} =-22 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+28}{2*1}=\frac{12}{2} =6 $
| 14a=12.1 | | 13x+2=3x-4+5x-7 | | 8.9/12=3/n | | 2. 13b-9=3b+4 | | (5x+6)-(5-4x)=-10 | | Y=x2+3x-6x3-8 | | 2n+3n+4n=36* | | x4+x3+4x2+4x=0 | | 16/12=20/y | | x=100*(1.22)^ | | 6/6y=50/90 | | y=100*(1.22)^ | | 3x-15=99 | | 24/10y=54/130 | | 9q2−24q+16=0 | | 2n/3n=15 | | 3+x+5=2x+5 | | 7a-3=3(a+9)+4a | | 2x-2+2x-10=12 | | 4y-3=2y | | Y=4x2+3x+2 | | n/52=180/120= | | 0.3+x/2=0.15x+2 | | F(-3)=6/x-3 | | x-7.8=2.5 | | x+(1/10)x=89 | | 7x2=-4x+8 | | 12+5a=-8 | | 6=2(15×3t) | | 3x-11=4+9 | | 3x-11-8=4+4x+5 | | 3x-11=4+4x+5 |